This paper gives a preliminary report of the analysis and design process of a scramjet engine inlet operating over a Mach number range from 5 to 10 without the use of variable geometry (moving parts) in order to find an optimal 2D geometry. An introduction of scramjet engine as well as its first component, the inlet, is given in the beginning and a number of basic inlet configurations are proposed. Inlet efficiency parameters and various design criteria are then explained, followed by a theoretical flow analysis utilizing some simplifying assumptions and the oblique shockwave relations. Next, 2D CFD simulations are carried out for some inlet geometries that are constructed based on the results of the theoretical analysis using the K-Omega SST turbulence model in Fluent to take into consideration boundary layer phenomena that the theoretical analysis is not able to cover. Lastly, a conclusion summarizing the design process is drawn and the optimal model is recommended.
Published in | International Journal of Mechanical Engineering and Applications (Volume 4, Issue 1) |
DOI | 10.11648/j.ijmea.20160401.12 |
Page(s) | 11-23 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Scramjet, Hypersonic, Inlet, Oblique Shockwave, CFD
[1] | Michael K. Smart, Scramjet inlets, Centre for Hypersonics, The University of Queensland Brisbane 4072, Australia, September 2010. |
[2] | Marta Marimon Mateu, Study of an Air – Breathing Engine for Hypersonic Flight, Polytechnic University of Catalonia, Spain, September 2013. |
[3] | Elvia Thompson, Keith Henry and Leslie Williams, Faster Than a Speeding Bullet: Guinness Recognizes NASA Scramjet, NASA, June 2005. |
[4] | Guy Norris, Skunk Works Reveals SR-71 Successor Plan, Aviation Week & Space Technology, November 2013. |
[5] | Van Wei, D. M., edited by E. T. Curran, Scramjet Propulsion, Progress in Astronautics and Aeronautics, Vol 189, AIAA, 2000. |
[6] | Heiser, W. H. and Pratt, D. T., Hypersonic Airbreathing Propulsion, AIAA Education Series, 1994. |
[7] | Kantrowitz, A., and Donaldson, C., Preliminary Investigation of Supersonic Diffuser, NACA WRL-713, 1945. |
[8] | Alex Grainger, Guillermo Paniagua, Starting Processes of High Contraction Ratio Scramjet Inlets, Institut von Karman de Dynamique des Fluides, Belgium, January 2012. |
[9] | John D. Anderson, Jr, Fundamentals of Aerodynamics, 5th Edition, The McGraw-Hill Companies, Inc, New York, 2011. |
[10] | Kristen N. Roberts, Analysis and Design of a hypersonic Scramjet engine with a starting Mach number of 4.00, Maters thesis, The University of Texas at Arlington, August 2008. |
APA Style
Luu Hong Quan, Nguyen Phu Hung, Le Doan Quang, Vu Ngoc Long. (2016). Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10. International Journal of Mechanical Engineering and Applications, 4(1), 11-23. https://doi.org/10.11648/j.ijmea.20160401.12
ACS Style
Luu Hong Quan; Nguyen Phu Hung; Le Doan Quang; Vu Ngoc Long. Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10. Int. J. Mech. Eng. Appl. 2016, 4(1), 11-23. doi: 10.11648/j.ijmea.20160401.12
AMA Style
Luu Hong Quan, Nguyen Phu Hung, Le Doan Quang, Vu Ngoc Long. Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10. Int J Mech Eng Appl. 2016;4(1):11-23. doi: 10.11648/j.ijmea.20160401.12
@article{10.11648/j.ijmea.20160401.12, author = {Luu Hong Quan and Nguyen Phu Hung and Le Doan Quang and Vu Ngoc Long}, title = {Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10}, journal = {International Journal of Mechanical Engineering and Applications}, volume = {4}, number = {1}, pages = {11-23}, doi = {10.11648/j.ijmea.20160401.12}, url = {https://doi.org/10.11648/j.ijmea.20160401.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmea.20160401.12}, abstract = {This paper gives a preliminary report of the analysis and design process of a scramjet engine inlet operating over a Mach number range from 5 to 10 without the use of variable geometry (moving parts) in order to find an optimal 2D geometry. An introduction of scramjet engine as well as its first component, the inlet, is given in the beginning and a number of basic inlet configurations are proposed. Inlet efficiency parameters and various design criteria are then explained, followed by a theoretical flow analysis utilizing some simplifying assumptions and the oblique shockwave relations. Next, 2D CFD simulations are carried out for some inlet geometries that are constructed based on the results of the theoretical analysis using the K-Omega SST turbulence model in Fluent to take into consideration boundary layer phenomena that the theoretical analysis is not able to cover. Lastly, a conclusion summarizing the design process is drawn and the optimal model is recommended.}, year = {2016} }
TY - JOUR T1 - Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10 AU - Luu Hong Quan AU - Nguyen Phu Hung AU - Le Doan Quang AU - Vu Ngoc Long Y1 - 2016/02/16 PY - 2016 N1 - https://doi.org/10.11648/j.ijmea.20160401.12 DO - 10.11648/j.ijmea.20160401.12 T2 - International Journal of Mechanical Engineering and Applications JF - International Journal of Mechanical Engineering and Applications JO - International Journal of Mechanical Engineering and Applications SP - 11 EP - 23 PB - Science Publishing Group SN - 2330-0248 UR - https://doi.org/10.11648/j.ijmea.20160401.12 AB - This paper gives a preliminary report of the analysis and design process of a scramjet engine inlet operating over a Mach number range from 5 to 10 without the use of variable geometry (moving parts) in order to find an optimal 2D geometry. An introduction of scramjet engine as well as its first component, the inlet, is given in the beginning and a number of basic inlet configurations are proposed. Inlet efficiency parameters and various design criteria are then explained, followed by a theoretical flow analysis utilizing some simplifying assumptions and the oblique shockwave relations. Next, 2D CFD simulations are carried out for some inlet geometries that are constructed based on the results of the theoretical analysis using the K-Omega SST turbulence model in Fluent to take into consideration boundary layer phenomena that the theoretical analysis is not able to cover. Lastly, a conclusion summarizing the design process is drawn and the optimal model is recommended. VL - 4 IS - 1 ER -