| Peer-Reviewed

Full Width at Half Maximum (FWHM) Analysis of Solitonic Pulse Applicable in Optical Network Communication

Received: 8 November 2014     Accepted: 12 November 2014     Published: 22 November 2014
Views:       Downloads:
Abstract

In this paper, we propose a system of microring resonator (MRR). This system uses a laser diode input which can be incorporated with an optical add/drop filter system. When light from the laser diode feedbacks to the fiber ring resonator, the pulses in the form of soliton can be generated by using appropriate fiber ring resonator parameters and also the input power. The filtering process occurs during the propagation of the pulse within the ring resonators. The full width at half maximum (FWHM) or bandwidth characterization of the pulse can be performed using the proposed system. Results obtained have established particular possibilities from the application such as optical network communication. The obtained results show the effects of coupling coefficients and ring radius on the bandwidth of the soliton pulse, where the graph of the FWHM versus the variable parameters such as the radius and coupling coefficient are presented.

Published in American Journal of Networks and Communications (Volume 4, Issue 2-1)

This article belongs to the Special Issue Recent Progresses in Optical Code-Division Multiple-Access (OCDMA) Technology

DOI 10.11648/j.ajnc.s.2015040201.11
Page(s) 1-5
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Optical Network Communication, Soliton, FWHM, Pulse Bandwidth Characterization

References
[1] Iraj Sadegh Amiri, Sayed Ehsan Alavi & Sevia Mahdaliza Idrus, Soliton Coding for Secured Optical Communication Link. USA: Springer, 2014.
[2] IS Amiri & A Afroozeh, Soliton Generation Based Optical Communication, in Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton, ed USA: Springer, 2014.
[3] I. S. Amiri, S. E. Alavi, H. Ahmad, A.S.M. Supa'at & N. Fisal, (2014) "Numerical Computation of Solitonic Pulse Generation for Terabit/Sec Data Transmission", Optical and Quantum Electronics,
[4] IS Amiri, MZ Zulkifli & H Ahmad, (2014) "Soliton comb generation using add-drop ring resonators", International Research Journal of Telecommunications and Information Technology,
[5] Iraj Sadegh Amiri, Sayed Ehsan Alavi, S. M. Idrus, Abdolkarim Afroozeh & Jalil Ali, Soliton Generation by Ring Resonator for Optical Communication Application. Hauppauge, NY 11788 USA: Nova Science Publishers, 2014.
[6] Amiri, H Ahmad & MZ Zulkifli, (2014) "Integrated ring resonator system analysis to Optimize the soliton transmission", International Research Journal of Nanoscience and Nanotechnology, 1(1), 002-007.
[7] Iraj Sadegh Amiri & Harith Ahmad, Optical Soliton Communication Using Ultra-Short Pulses. USA: Springer, 2014.
[8] I. S. Amiri, S. E. Alavi, Sevia M. Idrus, A. Nikoukar & J. Ali, (2013) "IEEE 802.15.3c WPAN Standard Using Millimeter Optical Soliton Pulse Generated By a Panda Ring Resonator", IEEE Photonics Journal, 5(5), 7901912.
[9] A. Afroozeh, A.Zeinalinezhad, I. S. Amiri & S. E. Pourmand, (2014) "Stop Light Generation using Nano Ring Resonators for ROM", Journal of Computational and Theoretical Nanoscience (CTN), 12(3),
[10] S. E. Alavi, I. S. Amiri, S. M. Idrus, ASM Supa’at, J. Ali & P. P. Yupapin, (2014) "All Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using MicroRing Resonators ", IEEE Photonics Journal, 6(1),
[11] IS Amiri, SE Alavi, N Fisal, ASM Supa'at & H Ahmad, (2014) "All-Optical Generation of Two IEEE802.11n Signals for 2×2 MIMO-RoF via MRR System", IEEE Photonics Journal, 6(6),
[12] I. S. Amiri & J. Ali, (2014) "Generating Highly Dark–Bright Solitons by Gaussian Beam Propagation in a PANDA Ring Resonator", Journal of Computational and Theoretical Nanoscience (CTN), 11(4), 1092-1099.
[13] I. S. Amiri, S. E. Alavi & J. Ali, (2013) "High Capacity Soliton Transmission for Indoor and Outdoor Communications Using Integrated Ring Resonators", International Journal of Communication Systems,
[14] IS Amiri, SE Alavi, H Ahmad, ASM Supa'at & N Fisal, (2014) "Generation and Transmission of 3× 3 W-Band MIMO-OFDM-RoF Signals Using Micro-Ring Resonators", Applied Optics, 53(34),
[15] I. S. Amiri, M. Ranjbar, A. Nikoukar, A. Shahidinejad, J. Ali & P. Yupapin, (2012), "Multi optical Soliton generated by PANDA ring resonator for secure network communication", in Computer and Communication Engineering (ICCCE) Conference, Malaysia, 760-764.
[16] I. S. Amiri, S. E. Alavi & H. Ahmad, (2015) "Analytical Treatment of the Ring Resonator Passive Systems and Bandwidth Characterization Using Directional Coupling Coefficients ", Journal of Computational and Theoretical Nanoscience (CTN), 12(3),
[17] Iraj Sadegh Amiri & Abdolkarim Afroozeh, Ring Resonator Systems to Perform the Optical Communication Enhancement Using Soliton. USA: Springer, 2014.
[18] IS Amiri & A Afroozeh, Integrated Ring Resonator Systems, in Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton, ed USA: Springer, 2014.
[19] I. S. Amiri, S. Soltanmohammadi, A. Shahidinejad & j. Ali, (2013) "Optical quantum transmitter with finesse of 30 at 800-nm central wavelength using microring resonators", Optical and Quantum Electronics, 45(10), 1095-1105.
[20] I. S. Amiri, A. Afroozeh, I. N. Nawi, M. A. Jalil, A. Mohamad, J. Ali & P. P. Yupapin, (2011) "Dark Soliton Array for communication security", Procedia Engineering, 8 417-422.
[21] I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supa'at, J. Ali & P. P. Yupapin, (2014) "W-Band OFDM Transmission for Radio-over-Fiber link Using Solitonic Millimeter Wave Generated by MRR", IEEE Journal of Quantum Electronics, 50(8), 622 - 628.
[22] I. S. Amiri & J. Ali, (2013) "Data Signal Processing Via a Manchester Coding-Decoding Method Using Chaotic Signals Generated by a PANDA Ring Resonator", Chinese Optics Letters, 11(4), 041901(4).
[23] S. E. Alavi, I. S. Amiri, M. R. K. Soltanian, A.S.M. Supa'at, N. Fisal & H. Ahmad, (2015) "Generation of Femtosecond Soliton Tweezers Using a Half-Panda System for Modeling the Trapping of a Human Red Blood Cell", Journal of Computational and Theoretical Nanoscience (CTN), 12(1),
[24] I. S. Amiri, S. E. Alavi & S. M. Idrus, Theoretical Background of Microring Resonator Systems and Soliton Communication, in Soliton Coding for Secured Optical Communication Link, ed USA: Springer, 2015, pp. 17-39.
[25] A. Afroozeh, I.S. Amiri, K. Chaudhary, J. Ali & P. P. Yupapin, Analysis of Optical Ring Resonator, in Advances in Laser and Optics Research, ed New York: Nova Science, 2014.
[26] I. S. Amiri, J. Ali & P. P. Yupapin, (2012) "Enhancement of FSR and Finesse Using Add/Drop Filter and PANDA Ring Resonator Systems", International Journal of Modern Physics B, 26(04), 1250034.
[27] I. S. Amiri, B. Barati, P. Sanati, A. Hosseinnia, HR Mansouri Khosravi, S. Pourmehdi, A. Emami & J. Ali, (2014) "Optical Stretcher of Biological Cells Using Sub-Nanometer Optical Tweezers Generated by an Add/Drop Microring Resonator System", Nanoscience and Nanotechnology Letters, 6(2), 111-117.
[28] I. S. Amiri, S. E. Alavi & S. M. Idrus, Introduction of Fiber Waveguide and Soliton Signals Used to Enhance the Communication Security, in Soliton Coding for Secured Optical Communication Link, ed USA: Springer, 2015, pp. 1-16.
[29] I. S. Amiri & J. Ali, (2014) "Femtosecond Optical Quantum Memory generation Using Optical Bright Soliton", Journal of Computational and Theoretical Nanoscience (CTN), 11(6), 1480-1485.
[30] I. S. Amiri & J. Ali, (2013) "Nano Particle Trapping By Ultra-short tweezer and wells Using MRR Interferometer System for Spectroscopy Application", Nanoscience and Nanotechnology Letters, 5(8), 850-856.
[31] P. Sanati, A. Afroozeh, I. S. Amiri, J.Ali & Lee Suan Chua, (2014) "Femtosecond Pulse Generation using Microring Resonators for Eye Nano Surgery", Nanoscience and Nanotechnology Letters, 6(3), 221-226
[32] I. S. Amiri & J. Ali, (2014) "Optical Quantum Generation and Transmission of 57-61 GHz Frequency Band Using an Optical Fiber Optics ", Journal of Computational and Theoretical Nanoscience (CTN), 11(10), 2130-2135.
[33] S. E. Alavi, I. S. Amiri, S. M. Idrus & A. S. M. Supa'at, (2014) "Generation and Wired/Wireless Transmission of IEEE802.16m Signal Using Solitons Generated By Microring Resonator", Optical and Quantum Electronics,
[34] S. E. Alavi, I. S. Amiri, H. Ahmad, N. Fisal & ASM. Supa’at, (2015) "Optical Amplification of Tweezers and Bright Soliton Using an Interferometer Ring Resonator System", Journal of Computational and Theoretical Nanoscience (CTN), 12(4),
[35] I. S. Amiri, A. Nikoukar, A. Shahidinejad, J. Ali & P. Yupapin, (2012), "Generation of discrete frequency and wavelength for secured computer networks system using integrated ring resonators", in Computer and Communication Engineering (ICCCE) Conference, Malaysia, 775-778.
[36] I. S. Amiri & J. Ali, (2014) "Picosecond Soliton pulse Generation Using a PANDA System for Solar Cells Fabrication", Journal of Computational and Theoretical Nanoscience (CTN), 11(3), 693-701.
[37] I. S. Amiri, A. Nikoukar & J. Ali, (2013) "GHz Frequency Band Soliton Generation Using Integrated Ring Resonator for WiMAX Optical Communication", Optical and Quantum Electronics, 46(9), 1165-1177.
[38] I. S. Amiri, M. Ebrahimi, A. H. Yazdavar, S. Gorbani, S. E. Alavi, Sevia M. Idrus & J. Ali, (2014) "Transmission of data with orthogonal frequency division multiplexing technique for communication networks using GHz frequency band soliton carrier", IET Communications, 8(8), 1364 – 1373.
[39] I. S. Amiri, K. Raman, A. Afroozeh, M. A. Jalil, I. N. Nawi, J. Ali & P. P. Yupapin, (2011) "Generation of DSA for security application", Procedia Engineering, 8 360-365.
[40] I. S. Amiri, P. Naraei & J. Ali, (2014) "Review and Theory of Optical Soliton Generation Used to Improve the Security and High Capacity of MRR and NRR Passive Systems", Journal of Computational and Theoretical Nanoscience (CTN), 11(9), 1875-1886.
[41] I. Sadegh Amiri, M. Nikmaram, A. Shahidinejad & J. Ali, (2013) "Generation of potential wells used for quantum codes transmission via a TDMA network communication system", Security and Communication Networks, 6(11), 1301-1309.
[42] I. S. Amiri, A. Afroozeh & M. Bahadoran, (2011) "Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonator System", Chinese Physics Letters, 28(10), 104205.
[43] Y. S. Neo, S. M. Idrus, M. F. Rahmat, S. E. Alavi & I. S. Amiri', (2014) "Adaptive Control for Laser Transmitter Feedforward Linearization System", IEEE Photonics Journal 6(4),
[44] I. S. Amiri, S. E. Alavi, M. Bahadoran, A. Afroozeh & H. Ahmad, (2015) "Nanometer Bandwidth Soliton Generation and Experimental Transmission within Nonlinear Fiber Optics Using an Add-Drop Filter System", Journal of Computational and Theoretical Nanoscience (CTN), 12(2),
[45] S. E. Alavi, I. S. Amiri, M. Khalily, A. S. M. Supa’ at, N. Fisal, H. Ahmad & S. M. Idrus, (2014) "W-Band OFDM for Radio-over-Fibre Direct-Detection Link Enabled By Frequency Nonupling Optical Up-Conversion", IEEE Photonics Journal 6(6),
[46] I. S. Amiri, R. Ahsan, A. Shahidinejad, J. Ali & P. P. Yupapin, (2012) "Characterisation of bifurcation and chaos in silicon microring resonator", IET Communications, 6(16), 2671-2675.
[47] S. E. Alavi, I.S.Amiri, A. S. M. Supa’at & S. M. Idrus, (2015) "Indoor Data Transmission Over Ubiquitous Infrastructure of Powerline Cables and LED Lighting", Journal of Computational and Theoretical Nanoscience (CTN), 12(4).
[48] I. S. Amiri & A. Afroozeh, Spatial and Temporal Soliton Pulse Generation By Transmission of Chaotic Signals Using Fiber Optic Link in Advances in Laser and Optics Research. vol. 11, ed New York: Nova Science Publisher, 2014.
Cite This Article
  • APA Style

    IS Amiri, H. Ahmad, Hamza M. R. Al-Khafaji. (2014). Full Width at Half Maximum (FWHM) Analysis of Solitonic Pulse Applicable in Optical Network Communication. American Journal of Networks and Communications, 4(2-1), 1-5. https://doi.org/10.11648/j.ajnc.s.2015040201.11

    Copy | Download

    ACS Style

    IS Amiri; H. Ahmad; Hamza M. R. Al-Khafaji. Full Width at Half Maximum (FWHM) Analysis of Solitonic Pulse Applicable in Optical Network Communication. Am. J. Netw. Commun. 2014, 4(2-1), 1-5. doi: 10.11648/j.ajnc.s.2015040201.11

    Copy | Download

    AMA Style

    IS Amiri, H. Ahmad, Hamza M. R. Al-Khafaji. Full Width at Half Maximum (FWHM) Analysis of Solitonic Pulse Applicable in Optical Network Communication. Am J Netw Commun. 2014;4(2-1):1-5. doi: 10.11648/j.ajnc.s.2015040201.11

    Copy | Download

  • @article{10.11648/j.ajnc.s.2015040201.11,
      author = {IS Amiri and H. Ahmad and Hamza M. R. Al-Khafaji},
      title = {Full Width at Half Maximum (FWHM) Analysis of Solitonic Pulse Applicable in Optical Network Communication},
      journal = {American Journal of Networks and Communications},
      volume = {4},
      number = {2-1},
      pages = {1-5},
      doi = {10.11648/j.ajnc.s.2015040201.11},
      url = {https://doi.org/10.11648/j.ajnc.s.2015040201.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajnc.s.2015040201.11},
      abstract = {In this paper, we propose a system of microring resonator (MRR). This system uses a laser diode input which can be incorporated with an optical add/drop filter system. When light from the laser diode feedbacks to the fiber ring resonator, the pulses in the form of soliton can be generated by using appropriate fiber ring resonator parameters and also the input power. The filtering process occurs during the propagation of the pulse within the ring resonators. The full width at half maximum (FWHM) or bandwidth characterization of the pulse can be performed using the proposed system. Results obtained have established particular possibilities from the application such as optical network communication. The obtained results show the effects of coupling coefficients and ring radius on the bandwidth of the soliton pulse, where the graph of the FWHM versus the variable parameters such as the radius and coupling coefficient are presented.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Full Width at Half Maximum (FWHM) Analysis of Solitonic Pulse Applicable in Optical Network Communication
    AU  - IS Amiri
    AU  - H. Ahmad
    AU  - Hamza M. R. Al-Khafaji
    Y1  - 2014/11/22
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ajnc.s.2015040201.11
    DO  - 10.11648/j.ajnc.s.2015040201.11
    T2  - American Journal of Networks and Communications
    JF  - American Journal of Networks and Communications
    JO  - American Journal of Networks and Communications
    SP  - 1
    EP  - 5
    PB  - Science Publishing Group
    SN  - 2326-8964
    UR  - https://doi.org/10.11648/j.ajnc.s.2015040201.11
    AB  - In this paper, we propose a system of microring resonator (MRR). This system uses a laser diode input which can be incorporated with an optical add/drop filter system. When light from the laser diode feedbacks to the fiber ring resonator, the pulses in the form of soliton can be generated by using appropriate fiber ring resonator parameters and also the input power. The filtering process occurs during the propagation of the pulse within the ring resonators. The full width at half maximum (FWHM) or bandwidth characterization of the pulse can be performed using the proposed system. Results obtained have established particular possibilities from the application such as optical network communication. The obtained results show the effects of coupling coefficients and ring radius on the bandwidth of the soliton pulse, where the graph of the FWHM versus the variable parameters such as the radius and coupling coefficient are presented.
    VL  - 4
    IS  - 2-1
    ER  - 

    Copy | Download

Author Information
  • Photonics Research Centre, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia

  • Photonics Research Centre, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia

  • Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor, Malaysia

  • Sections